Lesson 2

My first machine learning model from Scratch

Teach a machine to identify vehicle types

#Wheel Height Weight Color

#Wheel Height Weight Color

Identify the features which can represent the objects

 $F = \{f_1 f_2 f_3 \dots f_k\}$

Feature set={ #Wheel Height Weight Color }

#Wheel Height Weight Color

Identify the features which can represent the objects

 $F = \{f_1 f_2 f_3 \dots f_k\}$

For every sample, assign value to corresponding feature

$$v_i = \{w_{i1}w_{i2}w_{i3} \dots w_{ik}\}$$

where w_{ij} is the value assigned for the feature f_i

	#Wheel	Height	Weight	Color
	4	6	500	Red
	4	5.5	600	Blue
	4	5	550	Yellow
	2	3	200	Red
6	2	3.5	150	blue
	2	4	250	Yellow

For every object, assign value to corresponding feature

$$v_i = \{w_{i1}w_{i2}w_{i3} \dots w_{ik}\}$$

where w_{ij} is the value assigned for the feature f_i

Vector Space Model

#Wheel	Height	Weight	Color
4	6	500	Red Features Vectors
4	5.5	600	Blue
4	5	550	Yellow
2	3	200	Red
2	3.5	150	blue
2	4	250	Yellow

This form of representation is called Vector Space Model

Are all features useful?

Wheel	Height	Weight	Color	
4	6	500	Red	Features Vectors
4	5.5	600	Blue	
4	5	550	Yellow	Good Features #Wheel Height
2	3	200	Red	• Weight
2	3.5	150	blue	Bad Feature Colour
2	4	250	Yellow	

Features

Let us consider single feature

Training Dataset

Feature vector with Class label

Given the #Wheel, identify the vehicle

	#Wheel	Class Label
	4	CAR
	4	CAR
	4	CAR
	2	BIKE
	2	BIKE
	2	BIKE
	2	?

I	BIKE
	BIKE
I	BIKE
	?

Let us estimate

Pr(Vehicle type| #Wheel) = ?

Let us estimate the probability (type | #wheel)

4

4

4

2

2

2

#Wheel Class Label

CAR

CAR

CAR

BIKE

BIKE

BIKE

- Pr(CAR| 4) = 100% Pr(BIKE| 4) = 0%
- Pr(CAR| 2) = 0% Pr(BIKE| 2) = 100%

Ask the question now

#Wheel Class Label

4

4

4

2

2

2

BIKE

BIKE

- CAR **Pr(CAR| 4) = 100%** Pr(BIKE | 4) = 0%CAR CAR BIKE
 - Pr(CAR | 2) = 0%**Pr(BIKE | 2) = 100%**

There are multiple ways

BIKE

#Wheel

There are multiple ways

If selected feature is not sufficient

#Wheel Class Label

4

4

4

2

2

2

4

2

CAR

CAR

CAR

BIKE

BIKE

BIKE

BIKE

CAR

- Pr(CAR| 4) = 75% Pr(BIKE| 4) = 25%
- Pr(CAR| 2) = 25% Pr(BIKE| 2) = 75%

If selected feature is not sufficient

#Wheel Class Label

4

4

4

2

2

2

4

2

CAR

CAR

CAR

BIKE

BIKE

BIKE

BIKE

CAR

- Pr(CAR| 4) = 75% Pr(BIKE| 4) = 25%
- Pr(CAR| 2) = 25% Pr(BIKE| 2) = 75%

Pr(BIKE|2) > Pr(CAR|2) => BIKE

More Features

	#vvn
	4
	4
	4
	2
	2
	2
	4
	2

#Wheel Height Class Label

Η

Η

Η

L

L

L

L

Η

CAR

CAR

CAR

BIKE

BIKE

BIKE

BIKE

CAR

H: High, height >= 5

L: Low, height < 5

Estimate the probabilities, and ask the same question

	#

#Wheel	Height	Class Label
4	н	CAR
4	н	CAR
4	н	CAR
2	L	BIKE
2	L	BIKE
2	L	BIKE
4	L	BIKE
2	н	CAR

Pr(CAR| 4,H) = 100% Pr(BIKE | 4,L) = 100%**Pr(CAR| 2,H) = 100% Pr(BIKE**| 2,L) = 100% Pr(CAR | 4,L) = 0%Pr(BIKE|4,H) = 0%Pr(CAR | 2,L) = 0%**Pr(BIKE | 2,H) = 0%**

Estimate the probabilities, and ask the same question

	#

Wheel	Height	Class Label
4	н	CAR
4	н	CAR
4	н	CAR
2	L	BIKE
2	L	BIKE
2	L	BIKE
4	L	BIKE
2	н	CAR

Pr(CAR| 4,H) = 100% Pr(BIKE | 4,L) = 100%**Pr(CAR | 2,H) = 100% Pr(BIKE**| 2,L) = 100% Pr(CAR | 4,L) = 0%Pr(BIKE|4,H) = 0%Pr(CAR | 2,L) = 0%**Pr(BIKE | 2,H) = 0%**

Multiple ways

#Wheel Height Class Label

Multiple ways

#Wheel Height Class Label

Summary

- Identify the features
- Represent the vehicles by the features
- Remove non-informative features
- Build the classification model from the data
- Perform the classification task